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Abstract— To deal with the increasing demands in Air Traffic 

Control (ATC), new working place designs are proposed and 

developed that need novel human factors evaluation tools. In this 

paper, we propose a novel application of Electroencephalogram 

(EEG)-based emotion, workload, and stress recognition 

algorithms to investigate the optimal length of training for Air 

Traffic Control Officers (ATCOs) to learn working with three-

dimensional (3D) display as a supplementary to the existing 2D 

display. We tested and applied the state-of-the-art EEG-based 

subject-dependent algorithms. The following experiment was 

carried out. Twelve ATCOs were recruited to take part in the 

experiment. The participants were in charge of the Terminal 

Control Area, providing navigation assistance to aircraft 

departing and approaching the airport using 2D and 3D displays. 

EEG data were recorded, and traditional human factors 

questionnaires were given to the participants after 15-minute, 60-

minute, and 120-minute training. Different from the 

questionnaires, the EEG-based evaluation tools allow the 

recognition of emotions, workload, and stress with different 

temporal resolutions during the task performance by subjects. 

The results showed that 50-minute training could be enough for 

the ATCOs to learn the new display setting as they had relatively 

low stress and workload. The study demonstrated that there is a 

potential of applying the EEG-based human factors evaluation 

tools to assess novel system designs in addition to traditional 

questionnaire and feedback, which can be beneficial for future 

improvements and developments of the systems and interfaces.   

Keywords—Air traffic control, training, interface design, EEG, 

stress recognition, emotion recognition, workload recognition, 

human factors study  

I. INTRODUCTION 

Air Traffic Control (ATC) systems have been improved with 
the advancement in computer technology. However, with air 
traffic density expected to increase in the next 20 years [1], these 
systems need to be farther improved or replaced in order to keep 
up with the traffic demand. Currently, novel ATC system 
designs are proposed and developed. Such novel systems need 
to be well assessed before the implementation in real ATC 
systems in airports. Usually, the human factors experiments are 
done using traditional questionnaires that are filled after the task 
performance. However, novel Electroencephalogram (EEG)-
based human factors evaluation tools allow us to recognize 
workload, emotion and stress during the ATC task performance 
with high temporal resolution [2]. The state-of-the-art 
algorithms of emotion, workload, and stress recognition from 
EEG were tested and applied to evaluate the ATC procedures in 
[2] in addition to the traditional questionnaires and showed 
promising results. 

In the current stage, ATCOs monitor the movement of 
aircraft within the country’s airspace via a 2D display, which 
shows a plan view of the approach sector with dots representing 
the aircraft in view. However, there is no vertical representation 
of the altitude the aircrafts are flying at [3]. Instead, the 2D 
display shows the altitude or Flight Level (FL) as a numerical 
value on each dot that is tagged to that particular aircraft. This 
bird’s eye view of information could be messy during the peak 
hours, intensifying the stress on the ATCOs. It may increase the 
tendency for ATCOs to make errors, which could lead to severe 
consequences should there be a near miss. Thus, it is important 
to study the possibility of using additional 3D display in such 
procedure. In [4], it was proposed that 3D interface might be 
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useful in Trajectory Based Operations (TBO), Holding Stack 
Management (HSM), Continuous Climb Operations (CCO), and 
Continuous Descent Operations (CDO) procedures. In [5], 
HSM, CCO, CDO, and TBO procedures were assessed in 
relation to the use of an additional 3D display and the positive 
results were received for HSM. For implementing new 3D 
interfaces at ATCO workplace, it is important to find out the 
time needed for learning to use additional 3D display. In this 
paper, we propose and implement an experiment where 12 
ATCOs underwent two-hour training to use an additional 3D 
display based on real-life scenarios. The objective of the 
experiment is to determine the optimal training duration using 
novel EEG-based human factors evaluation tools such as human 
emotion, workload and stress recognition. The training durations 
of 30 minutes, 60 minutes, and 120 minutes are considered to 
find out the optimal training time in using the novel 3D display 
additionally to the 2D display. EEG is used to monitor the brain 
states of the ATCOs while they are learning to use the 2D+3D 
display. Traditional human factors questionnaires are also 
employed to get feedback from the ATCOs about the additional 
3D display. 

The paper is structured as follows. In Section II, related work 
is reviewed. In Section III, the experiment setting is introduced. 
In Section IV, the methodology is presented. Section V gives the 
results and finally Section VI concludes the paper. 

II. RELATED WORK 

A. Current ATC Radar Display 

A common ATC setup comprises two terminals, the Flight 
Radar Display (2D radar display) and the Flight Information 
Display. The Flight Radar Display (FRD) shows a plan view of 
the Flight Information Region (FIR) in which ATCOs have 
control over the aircraft flying within the region. Each aircraft is 
represented by a dot which displays the information such as 
aircraft call-sign, Flight Level (FL) at which they are flying, 
requested FL, aircraft speed and heading and expected runway 
(arrival) or departure routes (departure). 

This representation of information can get very complicated 
when there is a high air traffic density with multiple dots 
flooding the screen. Furthermore, because the FRD displays the 
information in one view, it could be difficult to visualise aircraft 
flying over each other, such as during a holding stack or on 
parallel airways. The only information ATCOs can take 
reference from would be through the numerical value of the FL 
at which the aircraft is flying. In addition, it might be possible 
that ATCOs may get confused with the numbering of FL (1FL 
= 100ft), impeding their judgement. There have been studies 
indicating that ATCOs experience difficulties in visualising 
aircraft altitude behaviour as well as vertical separation with a 
single 2D display [6]. 

B. Three-dimensional Radar Display 

The rising demand for aircrafts as a primary mode of 
transport is a compelling motivation for the aviation industry to 
increase the number of airplanes in operation at any one time. 
Consequently, air traffic controllers are required to become 
progressively efficient, not only in maintaining flight safety but 
also in the effectual guidance of orderly traffic flow. The 
cognitive capabilities of air traffic controllers would be 

challenged as they encounter more sophisticated instantaneous 
situations that necessitates swifter and more accurate decisions. 
It is imperative to ensure that the cognitive capacities of 
controllers are not exceeded in ATC duties [7], hence the need 
for more navigation aids such as decision support is growing. 
This however leads to an increasing amount of information 
necessary for controllers to perform their tasks which leads to an 
overloading of the conventional two-dimensional radar. 
Therefore, a potential remedy to overcome this problem would 
be through the use of a three-dimensional radar display [8].  

Although use of 3D displays in current ATC operations are 
scarce, numerous studies have been conducted to determine the 
potential of a 3D display. For example, experiments were 
conducted to determine the effectiveness of a 3D display in 
performing trajectory operations of aircrafts in different weather 
conditions and terrains [9]. The use of a 3D virtual reality (VR) 
system for real-time visual representation of air traffic are 
currently undergoing further evaluation [10]. Furthermore, the 
Federal Aviation Authority (FAA) have also directed several 
studies regarding the use of 3D displays with novel NextGen 
tools [11]. 

C. Study for Optimizing ATC Training 

Several researches have been conducted on optimizing the 
training efficiency of ATCOs by enabling learner-controlled 
task selection [12, 13]. Mental workload was measured by 
ratings from the subjects and used as an indicator of the training 
efficiency in [12]. In recent work [14], it also mentions that 
emotional stress could be used as an indirect indicator to assess 
the training. However, there is little work done on determining 
the optimal training length in ATC domain. Usually, fixed 
training duration is used [15]. To fill this gap, we investigate the 
optimal training length for ATCOs to manage a novel ATC 
system. Mental states such as workload, emotion, and stress are 
used as indicators to decide the duration of training.  

III. EXPERIMENT  

An experiment was carried out with ATCOs to determine the 
optimal training. EEG was recorded during the experiment to 
monitor the changes of brain states such as emotion, workload, 
and stress of the ATCOs while they were learning to use the 
additional 3D display. 

A. Flight Plan 

The flight plan comprises flight information of all planes in 
the training scenario, for instance, call sign, initial flight levels, 
designated runways, departing and arriving airport identifiers. 
To ensure realism, the required flight information was retrieved 
from Flightradar24, a live air traffic tracking website displaying 
the information of all flights in real time. However, to develop 
an appropriate scenario where the workload and mental effort 
experienced by the participants remain relatively constant 
throughout the two-hour scenario, flight schedules of each plane 
was slightly adjusted to maintain consistent air traffic density. 

B. Additional 3D Radar Display 

The 3D interface (shown in Fig. 1) possesses similar features 
to the conventional display, namely waypoint and flight labels 
as well as representation of restricted airspace.  



The main function of the 3D radar display is the use of screen 
rotation, tilt and pan to allow for an oblique viewpoint of the 
airspace. Besides, the novel interface also boasts several new 
features which can be toggled on or off based on the controls 
located at the top left portion of the screen. For example, flights 
at different altitudes are required to adhere to different 
separation minima based on their speed and aircraft type. These 
are represented as coloured cylinders around each plane blipper. 
Another useful feature is the prediction of aircraft trajectories. 
The location of any aircrafts within the designated airspace can 
be represented through the use of trajectory prediction. 
Furthermore, an additional feature known as conflict prediction 
is available in the 3D interface. When an aircraft trespasses into 
the separation minima of another aircraft/s, the safety separation 
cylinder will flash red to alert the controller of a potential 
conflict scenario. 

 

Fig. 1. 3D Flight Radar Display. 

C. Subjects  

Twelve Air Traffic Control Officers (ATCOs) with 
experience ranging from 1-8 years participated in the two-hour 
training session on the novel ATC three-dimensional radar 
display. As the participants have extensive experience with ATC 
operations, they are expected to have profound knowledge in the 
relevant protocols and be proficient in performing duties of a 
controller. Six out of the 12 ATCOs were males.  

D. EEG Recording 

A 14-channel Emotiv device [16] was used to record the 
EEG data. As the EEG-based brain state recognition algorithms 
are subject-dependent, calibration are needed before we can 
recognize the brain states during the ATC tasks. To induce the 
targeted emotions, sound clips from IADS [17] database are 
selected and used in the calibration process. For workload, the 
Stroop Color Test is used to evoke different levels of workload. 
More details about the calibration and the EEG-based brain 
states recognition algorithms can be found in our previous work 
[18] and [19]. After calibration, the ACTOs kept wearing the 
device and had their EEG recorded throughout the whole 
experiment. 

E. Questionnaire 

During the experiment, we have a series of questionnaires 
for the subjects to fill in, including intake questionnaire before 
the experiment and TRUST [20] questionnaires after 15-minute, 
60-minute, and 120-minute training of using the additional 3D 
display. The intake questionnaire includes demography of the 
subject, ATC background, and consent form to attend this 
experiment. The TRUST questionnaire contains two parts: 
deception and trust between the subjects and the system. These 
are the traditional techniques used in the study of human factors. 

F. Procedure 

During the experiment, each subject went through the 
following procedure: 

1. Briefing of the experiment. 

2. Filling of the intake questionnaire and consent form.  

3. Set-up and calibration of EEG-based emotion/workload 
recognition algorithm.  

4. Participants underwent training program (interrupted 
after 15 minutes, 60 minutes, and 120 minutes). 
Questionnaires (TRUST) were given after the 
interruptions. 

The experimental apparatus is as shown in Fig. 2, which 
consists of three separate screens: 3D radar display with a web 
camera to observe participants’ behaviours (leftmost screen), 
conventional 2D display (centre screen), and the flight schedule 
display (rightmost screen). The EEG signal was recorded by the 
Emotiv device, which is wirelessly connected to the laptop as 
shown in the right of the ATCOs. 

 

Fig. 2. Experiment scenario with ATCO. 

IV. METHODS 

A. EEG-based Brain State Regcognition Algirithms  

In our previous work [18] and [19], subject-dependent 
algorithms for emotion and workload recognition from EEG 
signals were proposed. In work [21], a stress recognition 
algorithm is proposed based on the emotion and workload 
recognition algorithms. The idea is to combine the recognized 
emotion and workload results to get stress level as it has proven 



that stress is correlated with emotion and workload [22]. Finally, 
up to 8 levels of stress can be identified using EEG. 

Successful emotion and workload recognition are crucial to 
the subsequent analysis, thus in this paper we further performed 
model selection by carrying out subject-dependent five-fold 
cross-validation using different features and classifiers on the 
labeled training data obtained during the calibration process. 
The model that yielded the best accuracy was selected for the 
subsequent processing. The averaged recognition accuracy 
across all subjects are presented in Table I and Table II for the 
emotion and workload recognition, respectively. As shown in 
the tables, the fractal dimension + 6 statistic features, in 
combination with a SVM [23] classifier, yield the best 
recognition accuracy for both emotion recognition and workload 
recognition. Additionally, the studies in [24, 25] have shown 
that the fractal dimension + 6 statistic features are among the 
most stable features even when no re-calibration is performed. 
We therefore use these models for the subsequent analysis of the 
ATCOs’ cognitive performance. 

TABLE I.  RECOGNITION ACCURACY (%) FOR THREE EMOTIONS 

(POSITIVE, NEUTRAL, AND NEGATIVE) 

Feature 
Classifier 

LDA 1-NN SVM Naïve Bayes 

6 Statistics [26] 66.11 62.41 69.07 62.22 

36 HOC [27] 45.37 38.70 41.30 43.33 

FD + 6 Statistics [28] 71.11 61.30 72.22 63.15 

Hjorth [29, 30] 52.41 52.04 61.30 57.22 

Signal Energy [30] 57.04 53.52 56.48 53.70 

Spectral Band Power 

(δ + θ + α + β) [31] 
57.59 62.41 59.63 57.59 

TABLE II.  RECOGNITION ACCURACY FOR FOUR WORKLOAD LEVELS. 

Feature 
Classifier 

LDA 1-NN SVM Naïve Bayes 

6 Statistics [26] 61.90 61.96 70.77 54.64 

36 HOC [27] 41.96 30.42 38.10 36.96 

FD + 6 Statistics [28] 54.46 61.43 74.23 52.68 

Hjorth [29, 30] 63.57 54.94 60.95 43.87 

Signal Energy [30] 54.11 52.02 42.62 39.88 

Spectral Band Power 

(δ + θ + α + β) [31] 57.38 53.51 54.64 41.85 

B. Hypotheses 

The following hypotheses are tested based on the EEG-based 
brain state recognition results: 

1. The participants experience the most negative emotions 
during the first 15 minutes of training, and more positive 
emotions comparing to the average emotional state of 1-
hour training. The average emotion of the entire 2-hour 
training is more negative compared to the average of 1-
hour training as the participants may feel less positive 
due to the long training hours. 

2. The participants experience high workload during the 
first 15 minutes of training and lower workload when 
taking the average of the first 1 hour. The average 
workload across the entire 2-hour training is lower than 
the average for 15 minutes and for 1 hour as the 
participants are expected to fully manage the new 3D 
display after 2-hour training.   

3. The participants experience a high stress level during 
the first 15 minutes of training, and a lower stress level 
during 60 minutes. When averaging across the entire 2-
hour training, the lowest level of stress is expected as 
the participants may fully manage the new 3D display 
after 2-hour training.   

For results from Trust questionnaire, we expect that 

4. There is less trust presented at the beginning of the 
training of using the 3D display (after 15 minutes). The 
trust level increases gradually and reaches the 
maximum at the end of the experiment (after 120 
minutes) 

V. RESULTS  

A. EEG-based Emotion Recognition 

Firstly, the EEG-based emotion recognition results are 
averaged for every 5-minute interval per participant, then a 
mean emotion level is obtained across all 12 participants for 15-
minute, 60-minute, and 120-minute training duration as shown 
in Fig. 3. Here, emotion scale ranges from 0 to 2, where each 
value 0, 1 and 2 represents positive, neutral and negative 
emotions respectively. Results obtained from the averaging of 
emotion values across the 12 participants indicate neutral 
emotions experienced throughout the 2-hour training. 
Relatively, the most negative emotions were experienced during 
the 15-minute time interval while the most positive emotions 
were obtained when considering the entire 2-hour training as 
shown in Fig. 3. These results imply that participants may have 
undesirable sentiments towards using a new system early on 
during the experiment before considerably adapting to it by the 
end of the experiment, leading to more positive feelings. This 
partially confirms Hypothesis 1 where it was stated that subjects 
would feel the most negative during the first 15 minutes of the 
experiment as they did not have enough time to adjust to the new 
3D display.  

 

Fig. 3. EEG-based emotion recognition results. 

A one-way repeated measures ANOVA was performed on 
the emotion data of all 12 participants during the 15-minutes, 
60-minutes and 120-minutes intervals. The test with a 
Greenhouse-Geisser correction to account for non-sphericity of 
results indicates emotion values obtained across the three time 
intervals were not statistically significant (p > 0.05). This may 
suggest that emotions experienced by the ATCOs does not have 



a statistically significant difference over different training 
durations. 

B. EEG-based Workload Recognition 

The average workload levels across all 12 participants for 
15-minute, 60-minute, and 120-minute training duration are 
calculated the same way as emotions in Section A. The result is 
presented in Fig. 4. Here, the workload scale ranges from 0 to 3 
with a stepwise of 1, where 0 indicating very low workload and 
3 representing the highest level of workload. From Fig. 4, the 
highest workload level experienced was during the first 15 
minutes of the experiments which then reduced significantly 
thereafter. It would be most likely due to the time taken for 
participants to be accustomed to a novel radar display system. 
With insufficient time to adapt to a new display, it would be 
expected that participants faced higher workload levels during 
the early portion of the experiment before getting used to the 
display. This observation agrees with the posited Hypothesis 2 
as the subjects experienced the highest workload levels at the 
beginning and relatively lower workload during 60 minutes 
training. However, in conflicting to Hypothesis 2, the workload 
level experienced increased again when taking the entire 120 
minutes into account, comparing to the results of 60 minutes. A 
possible reason could be fatigue that led to higher mental 
demand to complete the tasks. From the results, 60-minute 
training could be recommended as the optimal training duration.  

 

Fig. 4. EEG-based workload recognition results. 

A one-way repeated-measures ANOVA revealed an 
insignificant difference between the mean workload levels 
during different training periods (p>0.05).  

To further understand the results obtained, the workload 
results obtained via EEG was calculated over a 5-minute interval 
across all subjects and plotted in Fig. 6. As shown in the figure, 
the lowest workload was experienced when the training reached 
50 minutes. The earlier supposition is refined that a further 
reduction to the training duration to 50 minutes could be 
suggested as the graph showed the lowest workload is obtained 
when the training reached 50 minutes. 

C. EEG-based Stress Recognition 

Similarly, the average stress results across all 12 participants 
for 15-minute, 60-minute, and 120-minute training duration is 
shown in Fig. 5. Here, the stress scale ranges from 0 to 3.5 with 
a stepwise of 0.5, where 0 indicating very low stress and 3.5 
representing the highest level of stress. From Fig. 5, similar 

pattern is obtained for stress compared to workload, where the 
highest stress level experienced was during the first 15 minutes 
of the experiments and lower stress level was experienced 
during 60 minutes. However, different from workload results, 
the stress level kept decreasing insignificantly and reached the 
minimum at the end of the entire 120-minute training. As the 
stress recognition counts on both emotion and workload 
recognition results, this could be due to more positive emotion 
elicited at the end of the experiment. This observation agrees 
with the posited Hypothesis 3.  

 

Fig. 5. EEG-based stress recognition results. 

A one-way repeated measures ANOVA test was performed 
on the EEG-based stress results obtained for each participant. It 
indicates that stress experienced by ATCOs are significantly 
different among the training durations (p<0.05). Therefore, a 
paired samples t-test with a 95% confidence interval was also 
conducted to determine the significance of difference between 
two duration variables. It shows that the stress level experienced 
during 60 minutes of experiment was substantially less than that 
during the first 15 minutes which is aligned with the Hypothesis 
3. There is no significant difference between 60 minutes and 120 
minutes (p > 0.05). This may suggest that stress felt by the 
participants did not have considerable changes after the 1-hour. 

Same as workload results, the stress results obtained via 
EEG was also calculated over a 5-minute interval across all 
subjects and plotted in Fig. 7. The trend of the changes of stress 
indicated that there is a low stress value of 1.37 when the 
training reaches 50 minutes. Thus, the recommendation of 50 
minutes training concluded based on the workload results are 
further backed up by the stress results.  

D. Trust Questionnaire Results 

When reviewing the TRUST questionnaires, we noticed 
there is no significant changes of the TRUST questionnaire 
results over time. Thus Hypothesis 4 is not confirmed. However, 
one notable observation is the relationship between the ATCOs’ 
trust of the innovative system and their corresponding emotion, 
workload, and stress.   

The correlation coefficient is calculated between the EEG-
based emotion/workload/stress results and the ratings from 
TRUST (Table III). The EEG-base stress/workload recognition 
results and trust ratings indicated a negative correlation. In other 
words, this correlation indicates that with greater trust in an 
automated system, controllers consequently undergo less 
stress/workload during normal operations.  



 

Fig. 6. EEG-based worklaod recognition results over 5-minute interval. 

 

 

Fig. 7. EEG-based stress recognition results over 5-minute interval. 

The correlation between emotion and trust follows the same 
trend except for the result for the 2-hour time interval. The 
results indicate that when the controllers have more faith in the 
system, they work with a more positive sentiment. The 
anomalous result for the last time interval could be due to the 
external counteractive effects such as fatigue, whereby 
controllers may have high trust in the system as they already 

manage the system but prolonged operation lead to stronger 
negative sentiments. 

 

 

 



TABLE III.  CORRELATION BETWEEN EEG-BASED STRESS/EMOTION 

RESULTS AND TRUST RATINGS 

Duration 

Correlation 

Coefficients 

Stress 

(EEG) 

Workload 

(EEG) 

Emotion 

(EEG) 

15 minutes r -0.73 -0.70 -0.35 

60 minutes r -0.48 -0.44 -0.46 

120 minutes r -0.45 -0.34 0.14 

VI. CONCLUSION  

In this paper, we examined the effects of using a 
supplementary three-dimensional (3D) radar display on the 
emotions, workload, and stress of ATCOs during a training 
session, and aim to figure out the optimal training time for 
managing the supplementary 3D display. Twelve ATCOs 
underwent a two-hour training simulation using a novel 3D 
display in addition to the traditional 2D display based on real-
life scenarios. The reaction of the ATCOs to the training of using 
new system was measured by physiological methods (EEG) and 
subjective approaches (TRUST questionnaires). From the 
experimental results, it was observed that while emotions do not 
have a definitive impact on the training duration, workload and 
stress levels were significantly different among the training 
durations and the optimal training duration of 50 minutes is 
recommended with the criteria of low stress and workload level 
experienced as a basis. Furthermore, the correlation analysis 
indicates that if the ATOs have more faith in a novel system, 
their emotion could be more positive; stress and workload could 
be lower when they are learning to use this system. 
Conclusively, it was shown that the EEG data obtained provided 
a superior representation of the participants’ mental state in 
terms of accuracy and reliability.  
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